Nursidi Yuanto

Artikel Fisika

by nursidi on Oct.26, 2010, under Artikel Fisika

Model Kulit untuk menerangkan inti atom

Apakah kita pernah berpikir,tersusun dari apa sajakah meja makan kita?baju kita?makanan kita?sampai tersusun dari apakah tubuh kita..? Sampai seberapa kecilkah benda bisa dipotong-potong..??

Nah, pertanyaan itu sebenarnya sudah muncul dibenak seorang filsuf Yunani pada zaman sebelum masehi yang bernama Demokritos.

Demokritos berpendapat bahwa benda-benda tersusun atas partikel yang tidak dapat dibagi lagi dan disebut atom( dari kata atomos yaitu a berarti tidak dan tomos berarti dibagi). Namun sejalan dengan zaman, ternyata atom disusun oleh partikel-partikel yang kita kenal dengan sebutan elektron, neutron dan proton.

Jika dilihat dari sejarah ditemukannya atom,maka akan muncul sejarah panjang yang telah terfikirkan dari zaman sebelum masehi.

Perkembangan Teori Atom

1. Teori Atom John Dalton


Setelah pemikiran dari Demokritos,atom telah lama tenggelam dalam pemikiran sejarah manusia. Hingga pada tahun 1803, John Dalton mengemukakan mengemukakan pendapatnaya tentang atom. Teori atom Dalton didasarkan pada dua hukum, yaitu hukum kekekalan massa (hukum Lavoisier) dan hukum susunan tetap (hukum prouts). Lavosier mennyatakan bahwa “Massa total zat-zat sebelum reaksi akan selalu sama dengan massa total zat-zat hasil reaksi”. Sedangkan Prouts menyatakan bahwa “Perbandingan massa unsur-unsur dalam suatu senyawa selalu tetap”. Dari kedua hukum tersebut Dalton mengemukakan pendapatnya tentang atom sebagai berikut:

  1. Atom merupakan bagian terkecil dari materi yang sudah tidak dapat dibagi lagi
  2. Atom digambarkan sebagai bola pejal yang sangat kecil, suatu unsur memiliki atom-atom yang identik dan berbeda untuk unsur yang berbeda
  3. Atom-atom bergabung membentuk senyawa dengan perbandingan bilangan bulat dan sederhana. Misalnya air terdiri atom-atom hidrogen dan atom-atom oksigen
  4. Reaksi kimia merupakan pemisahan atau penggabungan atau penyusunan kembali dari atom-atom, sehingga atom tidak dapat diciptakan atau dimusnahkan.

Hipotesa Dalton digambarkan dengan model atom sebagai bola pejal seperti pada tolak peluru. Seperti gambar berikut ini:

Tetapi,dalam keberlangsungannya,teori ini mamiliki Kelemahan:

Teori dalton tidak menerangkan hubungan antara larutan senyawa dan daya hantar arus listrik.

2. Teori Atom J. J. Thomson


Berdasarkan penemuan tabung katode yang lebih baik oleh William Crookers, maka J.J. Thomson meneliti lebih lanjut tentang sinar katode dan dapat dipastikan bahwa sinar katode merupakan partikel, sebab dapat memutar baling-baling yang diletakkan diantara katode dan anode. Dari hasil percobaan ini, Thomson menyatakan bahwa sinar katode merupakan partikel penyusun atom (partikel subatom) yang bermuatan negatif dan selanjutnya disebut elektron.
Atom merupakan partikel yang bersifat netral, oleh karena elektron bermuatan negatif, maka harus ada partikel lain yang bermuatan positifuntuk menetrallkan muatan negatif elektron tersebut. Dari penemuannya tersebut, Thomson memperbaiki kelemahan dari teori atom dalton dan mengemukakan teori atomnya yang dikenal sebagai Teori Atom Thomson. Yang menyatakan bahwa:

“Atom merupakan bola pejal yang bermuatan positif dan didalamya tersebar muatan negatif elektron”

Model atom ini dapat digambarkan sebagai jambu biji yang sudah dikelupas kulitnya. biji jambu menggambarkan elektron yang tersebar marata dalam bola daging jambu yang pejal, yang pada model atom Thomson dianalogikan sebagai bola positif yang pejal. Model atom ini juga dikenal sebagai model atom kue kismis. Model atom Thomson dapat digambarkan sebagai berikut:

Kelemahan:

Kelemahan model atom Thomson ini tidak dapat menjelaskan susunan muatan positif dan negatif dalam bola atom tersebut.

3. Teori Atom Rutherford


Rutherford bersama dua orang muridnya (Hans Geigerdan Erners Masreden) melakukan percobaan yang dikenal dengan hamburan sinar alfa (λ) terhadap lempeng tipis emas. Sebelumya telah ditemukan adanya partikel alfa, yaitu partikel yang bermuatan positif dan bergerak lurus, berdaya tembus besar sehingga dapat menembus lembaran tipis kertas. Percobaan tersebut sebenarnya bertujuan untuk menguji pendapat Thomson, yakni apakah atom itu betul-betul merupakan bola pejal yang positif yang bila dikenai partikel alfa akan dipantulkan atau dibelokkan. Dari pengamatan mereka, didapatkan fakta bahwa apabila partikel alfa ditembakkan pada lempeng emas yang sangat tipis, maka sebagian besar partikel alfa diteruskan (ada penyimpangan sudut kurang dari 1°), tetapi dari pengamatan Marsden diperoleh fakta bahwa satu diantara 20.000 partikel alfa akan membelok sudut 90° bahkan lebih.
Berdasarkan gejala-gejala yang terjadi, diperoleh beberapa kesipulan beberapa berikut:

  1. Atom bukan merupakan bola pejal, karena hampir semua partikel alfa diteruskan
  2. Jika lempeng emas tersebut dianggap sebagai satu lapisan atom-atom emas, maka didalam atom emas terdapat partikel yang sangat kecil yang bermuatan positif.
  3. Partikel tersebut merupakan partikelyang menyusun suatu inti atom, berdasarkan fakta bahwa 1 dari 20.000 partikel alfa akan dibelokkan. Bila perbandingan 1:20.000 merupakan perbandingan diameter, maka didapatkan ukuran inti atom kira-kira 10.000 lebih kecil daripada ukuran atom keseluruhan.

Berdasarkan fakta-fakta yang didapatkan dari percobaan tersebut, Rutherford mengusulkan model atom yang dikenal dengan Model Atom Rutherford yang menyatakan bahwa Atom terdiri dari inti atom yang sangat kecil dan bermuatan positif, dikelilingi oleh elektron yang bermuatan negatif. Rutherford menduga bahwa didalam inti atom terdapat partikel netral yang berfungsi mengikat partikel-partikel positif agar tidak saling tolak menolak.

Model atom Rutherford dapat digambarkan sebagai beriukut:

gambar eksperiment rutherford

Kelemahan:

Tidak dapat menjelaskan mengapa elektron tidak jatuh ke dalam inti atom.

4. Teori Atom Bohr


ada tahun 1913, pakar fisika Denmark bernama Neils Bohr memperbaiki kegagalan atom Rutherford melalui percobaannya tentang spektrum atom hidrogen. Percobaannya ini berhasil memberikan gambaran keadaan elektron dalam menempati daerah disekitar inti atom.

Penjelasan Bohr tentang atom hidrogen melibatkan gabungan antara teori klasik dari Rutherford dan teori kuantum dari Planck, diungkapkan dengan empat postulat, sebagai berikut:

  1. Hanya ada seperangkat orbit tertentu yang diperbolehkan bagi satu elektron dalam atom hidrogen. Orbit ini dikenal sebagai keadaan gerak stasioner (menetap) elektron dan merupakan lintasan melingkar disekeliling inti.
  2. Selama elektron berada dalam lintasan stasioner, energi elektron tetap sehingga tidak ada energi dalam bentuk radiasi yang dipancarkan maupun diserap.
  3. Elektron hanya dapat berpindah dari satu lintasan stasioner ke lintasan stasioner lain. Pada peralihan ini, sejumlah energi tertentu terlibat, besarnya sesuai dengan persamaan planck, ΔE = hv.
  4. Lintasan stasioner yang dibolehkan memilki besaran dengan sifat-sifat tertentu, terutama sifat yang disebut momentum sudut. Besarnya momentum sudut merupakan kelipatan dari h/2∏ atau nh/2∏, dengan n adalah bilangan bulat dan h tetapan planck.

Menurut model atom bohr, elektron-elektron mengelilingi inti pada lintasan-lintasan tertentu yang disebut kulit elektron atau tingkat energi. Tingkat energi paling rendah adalah kulit elektron yang terletak paling dalam, semakin keluar semakin besar nomor kulitnya dan semakin tinggi tingkat energinya.

Kelemahan:

Model atom ini tidak bisa menjelaskan spektrum warna dari atom berelektron banyak.

5. Teori Atom Modern

Model atom mekanika kuantum dikembangkan oleh Erwin Schrodinger (1926).Sebelum Erwin Schrodinger, seorang ahli dari Jerman Werner Heisenberg mengembangkan teori mekanika kuantum yang dikenal dengan prinsip ketidakpastian yaitu “Tidak mungkin dapat ditentukan kedudukan dan momentum suatu benda secara seksama pada saat bersamaan, yang dapat ditentukan adalah kebolehjadian menemukan elektron pada jarak tertentu dari inti atom”.

Erwin Schrodinger                       Werner Heisenberg

Daerah ruang di sekitar inti dengan kebolehjadian untuk mendapatkan elektron disebut orbital. Bentuk dan tingkat energi orbital dirumuskan oleh Erwin Schrodinger.Erwin Schrodinger memecahkan suatu persamaan untuk mendapatkan fungsi gelombang untuk menggambarkan batas kemungkinan ditemukannya elektron dalam tiga dimensi.

Persamaan Schrodinger

x,y dan z
Y
m
ђ
E
V
= Posisi dalam tiga dimensi
= Fungsi gelombang
= massa
= h/2p dimana h = konstanta plank dan p = 3,14
= Energi total
= Energi potensial

Model atom dengan orbital lintasan elektron ini disebut model atom modern atau model atom mekanika kuantum yang berlaku sampai saat ini, seperti terlihat pada gambar berikut ini.

Awan elektron disekitar inti menunjukan tempat kebolehjadian elektron. Orbital menggambarkan tingkat energi elektron. Orbital-orbital dengan tingkat energi yang sama atau hampir sama akan membentuk sub kulit. Beberapa sub kulit bergabung membentuk kulit.Dengan demikian kulit terdiri dari beberapa sub kulit dan subkulit terdiri dari beberapa orbital. Walaupun posisi kulitnya sama tetapi posisi orbitalnya belum tentu sama.

Ciri khas model atom mekanika gelombang

  1. Gerakan elektron memiliki sifat gelombang, sehingga lintasannya (orbitnya) tidak stasioner seperti model Bohr, tetapi mengikuti penyelesaian kuadrat fungsi gelombang yang disebut orbital (bentuk tiga dimensi darikebolehjadian paling besar ditemukannya elektron dengan keadaan tertentu dalam suatu atom)
  2. Bentuk dan ukuran orbital bergantung pada harga dari ketiga bilangan kuantumnya. (Elektron yang menempati orbital dinyatakan dalam bilangan kuantum tersebut)
  3. Posisi elektron sejauh 0,529 Amstrong dari inti H menurut Bohr bukannya sesuatu yang pasti, tetapi bolehjadi merupakan peluang terbesar ditemukannya elektron.

Untuk sekedar informasi, atom sampai sekarang hanya diketahui modelnya saja. Maksudnya sampai saat ini belum ada seorangpun yang bisa melihat atom karena ukurannya yang sangat kecil. Para ilmuan membuat model atom dengan melihat sifat-sifat dari atom.

Tambahan lagi, penemu neutron adalah Chadwick dan Penemu Proton adalah Goldstein.

Setelah penemuan neutron dan proton,banyak penemuan-penemuan yang berkaitan dengan penyusun atom. Seperti halnya antimateri antara lain yaitu neutrino,positron dan lain-lain.RED

Leave a Comment : more...

by nursidi on Oct.12, 2010, under Artikel Fisika

Seven segmen

Dalam system penampil pada mokrokontroler terdapat beberapa jenis display,display menggunakan LCD,LED,LED dot matriks,seven segmen dan lain-lain.

Seven segmen merupakan devais penampil yang digunakan untuk menampilkan keluaran yang berbentuk huruf maupun angka. Seven segmen secara individu dalam lingkup divais komponen merupakan suatu IC yang terhubung pada LED yang telah tersusun sedemikian rupa sehingga terdapat beberapa kaki dan konektor yang digunakan sebagai masukan dalam system kinerjanya. Terdapat 10 kaki dalam divais seven segmen yang memiliki susunan kaki sebagai berikut.

Dalam kinerja untuk penampil dari system kerja mikro kontroler ATMEGA 8535,seven segmen membutuhkan system rangkaian penampil yang digunakan untuk mengatur kinerja dari tiap digit dan urutan penampil komponen seven segmen. Dalam rangkaia penampil seven segmen terdapat IC yang berisi tantang data dan program kinerja dari seven segmen yang telah disusun. IC mengatur tentang kinerja dari seven segmen yang mengacu pada bilangan hexadecimal yang telah terprogram lewat program bahasa assembly yang telah diinput sesuai dengan kinerja yang ditentukan.

Susunan rangkaian penampil seven segmen dapat dilihat sebagai berikut :

Gambar Rangkaian display seven segmen 4 digit.

Sedangkan untuk program bahasa assembly untuk counter perhitungan sampai 225 dapat dilihat sebagai berikut :

.INCLUDE”C:\APPNOTES\M8535DEF.INC”

.EQU TIMER_VALUE = 0XD5D0

;————————————————

; SET MAIN

;————————————————

MAIN: LDI R16, Low(RAMEND)

OUT SPL, R16

LDI R16, High(RAMEND)

OUT SPH, R16

;————————————————

; SET FUNGSI PORT

;————————————————

LDI R26,0XFF

LDI R27,0X00

OUT DDRC,R26

OUT PORTC,R27

;————————————————

; PROGRAM UTAMA

;————————————————

LDI R21,0

LDI R16,0

LDI R17,0

LDI R18,0

LDI R19,0

MULAI: RCALL DATA

RCALL HEXBCD

RCALL LAMPU

RCALL TUNDA

RJMP MULAI

DATA: INC R22

RET

LAMPU: LDI R20,0X3F

LAGI: MOV R29,R16

ORI R29,0X070

OUT PORTC,R29

RCALL TUNDA

MOV R29,R17

ORI R29,0X0B0

OUT PORTC,R29

RCALL TUNDA

MOV R29,R18

ORI R29,0X0D0

OUT PORTC,R29

RCALL TUNDA

MOV R29,R19

ORI R29,0X0E0

OUT PORTC,R29

RCALL TUNDA

DEC R20

CPI R20,0

BRNE LAGI

RET

HEXBCD: LDI R17,0

LDI R18,0

LDI R19,0

MOV R21,R22

RATUS: CPI R21,100

BRLO PULUH

INC R17

SUBI R21,100

RJMP RATUS

PULUH: CPI R21,10

BRLO SATU

INC R18

SUBI R21,10

RJMP PULUH

SATU: MOV R19,R21

RET

;————————————————

; PROSEDUR TUNDA

;————————————————

TUNDA: LDI R24,0×00

ULRO1: LDI R25,0×00

ULRO2: INC R25

CPI R25,255

BRNE UlRO2

INC R24

CPI R24,1

BRNE UlRO1

RET

DELAY5:

LDI R16, 0B00000100

OUT TIMSK, R16

LDI R16, HIGH(TIMER_VALUE)

OUT TCNT1H, R16

LDI R16, LOW(TIMER_VALUE)

OUT TCNT1L, R16

LDI R16, 0B00000101

OUT TCCR1B, R16

LOOPTIMER:

IN R17, TIFR

SBRS R17, TOV1

RJMP LOOPTIMER

LDI R16, 0B00000100

OUT TIFR,R16

RET

Leave a Comment more...


by nursidi on Nov.01, 2009, under Artikel Fisika

Tugas Fisika Nuklir

Nama : Nursidi Yuanto

Nim : J2D007030

Atom

Ilustrasi atom helium yang memperlihatkan inti atom (merah muda) dan distribusi awan elektron (hitam). Inti atom (kanan atas) berbentuk simetris bulat, walaupun untuk inti atom yang lebih rumit ia tidaklah selalu demikian.

Klasifikasi

Satuan terkecil unsur kimia

Sifat-sifat

Kisaran massa: 1,67 × 10−27 sampai dengan 4,52 × 10−25 kg

Muatan listrik: nol (netral) ataupun muatan ion

Kisaran diameter: 62 pm (He) sampai dengan 520 pm (Cs)

Komponen: Elektron dan inti atom yang terdiri dari proton dan neutron

Atom adalah satuan dasar materi yang terdiri dari inti atom beserta awan elektron bermuatan negatif yang mengelilinginya. Inti atom mengandung campuran proton yang bermuatan positif dan neutron yang bermuatan netral (terkecuali pada Hidrogen-1 yang tidak memiliki neutron). Elektron-elektron pada sebuah atom terikat pada inti atom oleh gaya elektromagnetik. Demikian pula sekumpulan atom dapat berikatan satu sama lainnya membentuk sebuah molekul. Atom yang mengandung jumlah proton dan elektron yang sama bersifat netral, sedangkan yang mengandung jumlah proton dan elektron yang berbeda bersifat positif atau negatif dan merupakan ion. Atom dikelompokkan berdasarkan jumlah proton dan neutron pada inti atom tersebut. Jumlah proton pada atom menentukan unsur kimia atom tersebut, dan jumlah neutron menentukan isotop unsur tersebut.

Istilah atom berasal dari Bahasa Yunani (τομος/átomos, α-τεμνω), yang berarti tidak dapat dipotong ataupun sesuatu yang tidak dapat dibagi-bagi lagi. Konsep atom sebagai komponen yang tak dapat dibagi-bagi lagi pertama kali diajukan oleh para filsuf India dan Yunani. Pada abad ke-17 dan ke-18, para kimiawan meletakkan dasar-dasar pemikiran ini dengan menunjukkan bahwa zat-zat tertentu tidak dapat dibagi-bagi lebih jauh lagi menggunakan metode-metode kimia. Selama akhir abad ke-19 dan awal abad ke-20, para fisikawan berhasil menemukan struktur dan komponen-komponen subatom di dalam atom, membuktikan bahwa ‘atom’ tidaklah tak dapat dibagi-bagi lagi. Prinsip-prinsip mekanika kuantum yang digunakan pada fisikawan kemudian berhasil memodelkan atom.[1][2]

Relatif terhadap pengamatan sehari-hari, atom merupakan objek yang sangat kecil dengan massa yang sama kecilnya pula. Atom hanya dapat dipantau menggunakan peralatan khusus seperti mikroskop penerowongan payaran (scanning tunneling microscope). Lebih dari 99,9% massa atom berpusat pada inti atom,[catatan 1] dengan proton dan neutron yang bermassa hampir sama. Setiap unsur paling tidak memiliki satu isotop dengan inti yang tidak stabil yang dapat mengalami peluruhan radioaktif. Hal ini dapat mengakibatkan transmutasi yang mengubah jumlah proton dan neutron pada inti.[3] Elektron yang terikat pada atom mengandung sejumlah aras energi, ataupun orbital, yang stabil dan dapat mengalami transisi di antara aras tersebut dengan menyerap ataupun memancarkan foton yang sesuai dengan perbedaan energi antara aras. Elektron pada atom menentukan sifat-sifat kimiawi sebuah unsur dan mempengaruhi sifat-sifat magnetis atom tersebut.

Komponen-komponen atom

Partikel subatom

Walaupun awalnya kata atom berarti suatu partikel yang tidak dapat dipotong-potong lagi menjadi partikel yang lebih kecil, dalam terminologi ilmu pengetahuan modern, atom tersusun atas berbagai partikel subatom. Partikel-partikel penyusun atom ini adalah elektron, proton, dan neutron. Namun hidrogen-1 tidak mempunyai neutron. Demikian pula halnya pada ion hidrogen positif H+.

Dari kesemua partikel subatom ini, elektron adalah yang paling ringan, dengan massa elektron sebesar 9,11 × 10−31 kg dan mempunyai muatan negatif. Ukuran elektron sangatlah kecil sedemikiannya tiada teknik pengukuran yang dapat digunakan untuk mengukur ukurannya.[32] Proton memiliki muatan positif dan massa 1.836 kali lebih berat daripada elektron (1,6726 × 10−27 kg). Neutron tidak bermuatan listrik dan bermassa bebas 1.839 kali massa elektron[33] or (1,6929 × 10−27 kg).

Dalam model standar fisika, baik proton dan neutron terdiri dari partikel elementer yang disebut kuark. Kuark termasuk kedalah golongan partikel fermion dan merupakan salah satu dari dua bahan penyusun materi dasar (yang lainnya adalah lepton). Terdapat enam jenis kuark dan tiap-tiap kuark tersebut memiliki muatan listri fraksional sebesar +2/3 ataupun −1/3. Proton terdiri dari dua kuark naik (up quark) dan satu kuark turun (down quark), manakala neutron terdiri dari satu kuark naik dan dua kuark turun. Perbedaan komposisi kuark ini mempengaruhi perbedaan massa dan muatan antara dua partikel tersebut. Kuark terikat bersama oleh gaya nuklir kuat yang diperantarai oleh gluon. Gluon merupakan anggota dari boson gauge yang memerantarai gaya-gaya fisika.[34][35]

Inti atom

<!– /* Font Definitions */ @font-face {font-family:Calibri; mso-font-alt:”Century Gothic”; mso-font-charset:0; mso-generic-font-family:swiss; mso-font-pitch:variable; mso-font-signature:-1610611985 1073750139 0 0 159 0;} /* Style Definitions */ p.MsoNormal, li.MsoNormal, div.MsoNormal {mso-style-parent:”"; margin-top:0in; margin-right:0in; margin-bottom:10.0pt; margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:Calibri; mso-fareast-font-family:Calibri; mso-bidi-font-family:”Times New Roman”;} @page Section1 {size:8.5in 11.0in; margin:1.0in 1.25in 1.0in 1.25in; mso-header-margin:.5in; mso-footer-margin:.5in; mso-paper-source:0;} div.Section1 {page:Section1;} –>

Energi pengikatan yang diperlukan oleh nukleon untuk lolos dari inti pada berbagai isotop.

Inti atom terdiri dari proton dan neutron yang terikat bersama pada pusat atom. Secara kolektif, proton dan neutron tersebut disebut sebagai nukleon (partikel penyusun inti). Jari-jari inti diperkirakan sama dengan fm, dengan A adalah jumlah nukleon.[36] Hal ini sangatlah kecil dibandingkan dengan jari-jari atom. Nukleon-nukleon tersebut terikat bersama oleh gaya tarik-menarik potensial yang disebut gaya kuat residual. Pada jarak lebih kecil daripada 2,5 fm, gaya ini lebih kuat daripada gaya elektrostatik yang menyebabkan proton saling tolak menolak.[37]

Atom dari unsur kimia yang sama memiliki jumlah proton yang sama, disebut nomor atom. Suatu unsur dapat memiliki jumlah neutron yang bervariasi. Variasi ini disebut sebagai isotop. Jumlah proton dan neutron suatu atom akan menentukan nuklida atom tersebut, sedangkan jumlah neutron relatif terhadap jumlah proton akan menentukan stabilitas inti atom, dengan isotop unsur tertentu akan menjalankan peluruhan radioaktif.[38]

Neutron dan proton adalah dua jenis fermion yang berbeda. Asas pengecualian Pauli melarang adanya keberadaan fermion yang identik (seperti misalnya proton berganda) menduduki suatu keadaan fisik kuantum yang sama pada waktu yang sama. Oleh karena itu, setiap proton dalam inti atom harusnya menduduki keadaan kuantum yang berbeda dengan aras energinya masing-masing. Asas Pauli ini juga berlaku untuk neutron. Pelarangan ini tidak berlaku bagi proton dan neutron yang menduduki keadaan kuantum yang sama.[39]

Untuk atom dengan nomor atom yang rendah, inti atom yang memiliki jumlah proton lebih banyak daripada neutron berpotensi jatuh ke keadaan energi yang lebih rendah melalui peluruhan radioaktif yang menyebabkan jumlah proton dan neutron seimbang. Oleh karena itu, atom dengan jumlah proton dan neutron yang berimbang lebih stabil dan cenderung tidak meluruh. Namun, dengan meningkatnya nomor atom, gaya tolak-menolak antar proton membuat inti atom memerlukan proporsi neutron yang lebih tinggi lagi untuk menjaga stabilitasnya. Pada inti yang paling berat, rasio neutron per proton yang diperlukan untuk menjaga stabilitasnya akan meningkat menjadi 1,5.[39]

Gambaran proses fusi nuklir yang menghasilkan inti deuterium (terdiri dari satu proton dan satu neutron). Satu positron (e+) dipancarkan bersamaan dengan neutrino elektron.

Jumlah proton dan neutron pada inti atom dapat diubah, walaupun hal ini memerlukan energi yang sangat tinggi oleh karena gaya atraksinya yang kuat. Fusi nuklir terjadi ketika banyak partikel atom bergabung membentuk inti yang lebih berat. Sebagai contoh, pada inti Matahari, proton memerlukan energi sekitar 3–10 keV untuk mengatasi gaya tolak-menolak antar sesamanya dan bergabung menjadi satu inti.[40] Fisi nuklir merupakan kebalikan dari proses fusi. Pada fisi nulir, inti dipecah menjadi dua inti yang lebih kecil. Hal ini biasanya terjadi melalui peluruhan radioaktif. Inti atom juga dapat diubah melalui penembakan partikel subatom berenergi tinggi. Apabila hal ini mengubah jumlah proton dalam inti, atom tersebut akan berubah unsurnya.[41][42]

Jika massa inti setelah terjadinya reaksi fusi lebih kecil daripada jumlah massa partikel awal penyusunnya, maka perbedaan ini disebabkan oleh pelepasan pancaran energi (misalnya sinar gamma), sebagaimana yang ditemukan pada rumus kesetaraan massa-energi Einstein, E = mc2, dengan m adalah massa yang hilang dan c adalah kecepatan cahaya. Defisit ini merupakan bagian dari energi pengikatan inti yang baru.[43]

Fusi dua inti yang menghasilkan inti yang lebih besar dengan nomor atom lebih rendah daripada besi dan nikel (jumlah total nukleon sama dengan 60) biasanya bersifat eksotermik, yang berarti bahwa proses ini melepaskan energi.[44] Adalah proses pelepasan energi inilah yang membuat fusi nuklir pada bintang dapat dipertahankan. Untuk inti yang lebih berat, energi pengikatan per nukleon dalam inti mulai menurun. Ini berarti bahwa proses fusi akan bersifat endotermik.[39]

Awan electron

Sumur potensial yang menunjukkan energi minimum V(x) yang diperlukan untuk mencapai tiap-tiap posisi x. Suatu partikel dengan energi E dibatasi pada kisaran posisi antara x1 dan x2.

Elektron dalam suatu atom ditarik oleh proton dalam inti atom melalui gaya elektromagnetik. Gaya ini mengikat elektron dalam sumur potensi elektrostatik di sekitar inti. Hal ini berarti bawah energi luar diperlukan agar elektron dapat lolos dari atom. Semakin dekat suatu elektron dalan inti, semakin besar gaya atraksinya, sehingga elektron yang berada dekat dengan pusat sumur potensi memerlukan energi yang lebih besar untuk lolos.

Elektron, sama seperti partikel lainnya, memiliki sifat seperti partikel maupun seperti gelombang (dualisme gelombang-partikel). Awan elektron adalah suatu daerah dalam sumur potensi di mana tiap-tiap elektron menghasilkan sejenis gelombang diam (yaitu gelombang yang tidak bergerak relatif terhadap inti) tiga dimensi. Perilaku ini ditentukan oleh orbital atom, yakni suatu fungsi matematika yang menghitung probabilitas suatu elektron akan muncul pada suatu lokasi tertentu ketika posisinya diukur.[45] Hanya akan ada satu himpunan orbital tertentu yang berada disekitar inti, karena pola-pola gelombang lainnya akan dengan cepat meluruh menjadi bentuk yang lebih stabil.[46]

Fungsi gelombang dari lima orbital atom pertama. Tiga orbital 2p memperlihatkan satu biidang simpul.

Tiap-tiap orbital atom berkoresponden terhadap aras energi elektron tertentu. Elektron dapat berubah keadaannya ke aras energi yang lebih tinggi dengan menyerap sebuah foton. Selain dapat naik menuju aras energi yang lebih tinggi, suatu elektron dapat pula turun ke keadaan energi yang lebih rendah dengan memancarkan energi yang berlebih sebagai foton.[46]

Energi yang diperlukan untuk melepaskan ataupun menambah satu elektron (energi pengikatan elektron) adalah lebih kecil daripada energi pengikatan nukleon. Sebagai contohnya, hanya diperlukan 13,6 eV untuk melepaskan elektron dari atom hidrogen.[47] Bandingkan dengan energi sebesar 2,3 MeV yang diperlukan untuk memecah inti deuterium.[48] Atom bermuatan listrik netral oleh karena jumlah proton dan elektronnya yang sama. Atom yang kekurangan ataupun kelebihan elektron disebut sebagai ion. Elektron yang terletak paling luar dari inti dapat ditransfer ataupun dibagi ke atom terdekat lainnya. Dengan cara inilah, atom dapat saling berikatan membentuk molekul.[49]

Sifat-sifat

Sifat-sifat nuklir

Berdasarkan definisi, dua atom dengan jumlah proton yang identik dalam intinya termasuk ke dalam unsur kimia yang sama. Atom dengan jumlah proton sama namun dengan jumlah neutron berbeda adalah dua isotop berbeda dari satu unsur yang sama. Sebagai contohnya, semua hidrogen memiliki satu proton, namun terdapat satu isotop hidrogen yang tidak memiliki neutron (hidrogen-1), satu isotop yang memiliki satu neutron (deuterium), dua neutron (tritium), dll. Hidrogen-1 adalah bentuk isotop hidrogen yang paling umum. Kadang-kadang ia disebut sebagai protium.[50] Semua isotop unsur yang bernomor atom lebih besar daripada 82 bersifat radioaktife.[51][52]

Sekitar 339 nuklida yang terbentuk secara alami di Bumi, 269 di antaranya belum pernah terpantau meluruh.[53] Pada unsur kimia, 80 dari unsur yang diketahui memiliki satu atau lebih isotop stabil. Unsur 43, 63, dan semua unsur lebih tinggi dari 83 tidak memiliki isotop stabil. Dua puluh tujuh unsur hanya memiliki satu isotop stabil, manakala jumlah isotop stabil yang paling banyak terpantau pada unsur timah dengan 10 jenis isotop stabil.[54]

Massa

Karena mayoritas massa atom berasal dari proton dan neutron, jumlah keseluruhan partikel ini dalam atom disebut sebagai bilangan massa. Massa atom pada keadaan diam sering diekspresikan menggunakan satuan massa atom (u) yang juga disebut dalton (Da). Satuan ini didefinisikan sebagai seperduabelas massa atom karbon-12 netral, yang kira-kira sebesar 1,66 × 10−27 kg.[55] Hidrogen-1 yang merupakan isotop teringan hidrogen memiliki bobot atom 1,007825 u.[56] Atom memiliki massa yang kira-kira sama dengan bilangan massanya dikalikan satuan massa atom.[57] Atom stabil yang paling berat adalah timbal-208,[51] dengan massa sebesar 207,9766521 u.[58]

Para kimiawan biasanya menggunakan satuan mol untuk menyatakan jumlah atom. Satu mol didefinisikan sebagai jumlah atom yang terdapat pada 12 gram persis karbon-12. Jumlah ini adalah sekitar 6,022 × 1023, yang dikenal pula dengan nama tetapan Avogadro. Dengan demikian suatu unsur dengan massa atom 1 u akan memiliki satu mol atom yang bermassa 0,001 kg. Sebagai contohnya, Karbon memiliki massa atom 12 u, sehingga satu mol karbon atom memiliki massa 0,012 kg.[55]

Ukuran

Atom tidak memiliki batasan luar yang jelas, sehingga dimensi atom biasanya dideskripsikan sebagai jarak antara dua inti atom ketika dua atom bergabung bersama dalam ikatan kimia. Jari-jari ini bervariasi tergantung pada jenis atom, jenis ikatan yang terlibat, jumlah atom di sekitarnya, dan spin atom.[59] Pada tabel periodik unsur-unsur, jari-jari atom akan cenderung meningkat seiring dengan meningkatnya periode (atas ke bawah). Sebaliknya jari-jari atom akan cenderung meningkat seiring dengan meningkatnya nomor golongan (kiri ke kanan).[60] Oleh karena itu, atom yang terkecil adalah helium dengan jari-jari 32 pm, manakala yang terbesar adalah sesium dengan jari-jari 225 pm.[61] Dimensi ini ribuan kali lebih kecil daripada gelombang cahaya (400–700 nm), sehingga atom tidak dapat dilihat menggunakan mikroskop optik biasa. Namun, atom dapat dipantau menggunakan mikroskop penerowongan payaran.

Ukuran atom sangatlah kecil, sedemikian kecilnya lebar satu helai rambut dapat menampung sekitar 1 juta atom karbon.[62] Satu tetes air pula mengandung sekitar 2 × 1021 atom oksigen.[63] Intan satu karat dengan massa 2 × 10-4 kg mengandung sekitar 1022 atom karbon.[catatan 2] Jika sebuah apel diperbesar dengan ukuran sebesar Bumi, maka atom dalam apel tersebut akan terlihat sebesar ukuran apel asli tersebut.[64]

Jari-Jari (Radius) Inti

Jari-jari inti belum bisa ditentukan/diukur secara langsung karena teknologi yang ada belum bisa melihat struktur inti atom secara langsung. Jari-jari atom hanya bisa dideteksi besarnya melalui eksperimen. Ada dua metode, yaitu cara Nuklir dan Cara Elektromagnetik. Jika diasumsikan inti bulat (bola), maka jejarinya ditentukan degan persamaan :

R= ro.A1/3

a. Cara Nuklir : Cara ini diukur jari-jari gaya inti (nuclear force radius),yaitu jarak dari pusat inti (core) ke jarak jangkauan gaya inti.

Cara yang termasuk metode ini :

· Hamburan partikel alfa, diperoleh :

ro=1,414 x 10-13 cm

· Peluruhan alfa dengan hasil :

ro=1,48 x 10-13 cm

· Hamburan neutron cepat dengan hasil :

ro=1,37 x 10-13 cm

Berdasarkan eksperimen tersebut,jari-jari inti belum bisa ditentukan secara seksama. Terdapat beberapa hal yang perlu dijadikan sebagai kemungkinan yang palig mendekati untuk mengasumsikan jari-jari inti atom/nuklir,yaitu :

· Rutherford menyimpulkan bahwa jangkauan dari gaya inti harus kurang dari 10 -14 m untuk radius sekelilingnya.

· Asumsikan bahwa nucleus adalah lapisan dari jari-jari R .

· Partikel (elektron, proton, neutron, dan alfa) tersebar mendekati inti.

· Ini tidak jelas nyata apakah interaksi maksimum memberi jarak menunjuk ke ukuran inti( jari-jari inti ), atau apakah gaya inti meluas berada di luar inti( jari-jari gaya inti ).

· Gaya inti/the nuclear force disebut juga strong force.

Jari-jari gaya inti ≈ jari-jari masa inti ≈jari-jari energi inti

· Kita mempergunakan femtometer dengan 1 fm = 10 -15 m, atau fermi.

Nucleus paling ringan oleh distribusi Fermi untuk nuklir mencari kepadatan ρ ( r ) adalah


Bentuk dari distribusi Fermi

1202

Jika kita menganggap bentuk nuklir sebagai satu lapisan,maka kepadatan nuklir adalah 2.3 × 10 17 kg / m 3 .

Leave a Comment more...

Improve the web with Nofollow Reciprocity.

Looking for something?

Use the form below to search the site:

Still not finding what you're looking for? Drop a comment on a post or contact us so we can take care of it!

Visit our friends!

A few highly recommended friends...

Archives

All entries, chronologically...